.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_gallery/gridplot/multigraphic_gridplot.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr__gallery_gridplot_multigraphic_gridplot.py: Multi-Graphic GridPlot ====================== Example showing a Figure with multiple subplots and multiple graphic types. .. GENERATED FROM PYTHON SOURCE LINES 7-118 .. image-sg:: /_gallery/gridplot/images/sphx_glr_multigraphic_gridplot_001.webp :alt: multigraphic gridplot :srcset: /_gallery/gridplot/images/sphx_glr_multigraphic_gridplot_001.webp :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Imageio: 'coins.png' was not found on your computer; downloading it now. Try 1. Download from https://github.com/imageio/imageio-binaries/raw/master/images/coins.png (77 kB) Downloading: 8192/78467 bytes (10.4%)78467/78467 bytes (100.0%) Done File saved as /home/runner/.imageio/images/coins.png. /home/runner/work/fastplotlib/fastplotlib/fastplotlib/graphics/_features/_base.py:18: UserWarning: casting float64 array to float32 warn(f"casting {array.dtype} array to float32") | .. code-block:: Python # test_example = false import fastplotlib as fpl import numpy as np import imageio.v3 as iio from itertools import product # define figure figure = fpl.Figure( shape=(2, 2), names=[["image-overlay", "circles"], ["line-stack", "scatter"]], size=(700, 560) ) img = iio.imread("imageio:coffee.png") # add image to subplot figure["image-overlay"].add_image(data=img) # generate overlay # empty array for overlay, shape is [nrows, ncols, RGBA] overlay = np.zeros(shape=(*img.shape[:2], 4), dtype=np.float32) # set the blue values of some pixels with an alpha > 1 overlay[img[:, :, -1] > 200] = np.array([0.0, 0.0, 1.0, 0.6]).astype(np.float32) # add overlay to image figure["image-overlay"].add_image(data=overlay) # generate some circles def make_circle(center, radius: float, n_points: int = 75) -> np.ndarray: theta = np.linspace(0, 2 * np.pi, n_points) xs = radius * np.sin(theta) ys = radius * np.cos(theta) return np.column_stack([xs, ys]) + center spatial_dims = (50, 50) # this makes 16 circles, so we can create 16 cmap values, so it will use these values to set the # color of the line based by using the cmap as a LUT with the corresponding cmap_transform circles = list() for center in product(range(0, spatial_dims[0], 15), range(0, spatial_dims[1], 15)): circles.append(make_circle(center, 5, n_points=75)) # things like class labels, cluster labels, etc. cmap_transform = [ 0, 1, 1, 2, 0, 0, 1, 1, 2, 2, 8, 3, 1, 9, 1, 5 ] # add an image to overlay the circles on img2 = iio.imread("imageio:coins.png")[10::5, 5::5] figure["circles"].add_image(data=img2, cmap="gray") # add the circles to the figure figure["circles"].add_line_collection( circles, cmap="tab10", cmap_transform=cmap_transform, thickness=3, alpha=0.5, name="circles-graphic" ) # move the circles graphic so that it is centered over the image figure["circles"]["circles-graphic"].offset = np.array([7, 7, 2]) # generate some sine data # linspace, create 100 evenly spaced x values from -10 to 10 xs = np.linspace(-10, 10, 100) # sine wave ys = np.sin(xs) sine = np.dstack([xs, ys])[0] # make 10 identical waves sine_waves = 10 * [sine] # add the line stack to the figure figure["line-stack"].add_line_stack(data=sine_waves, cmap="Wistia", separation=1) figure["line-stack"].auto_scale(maintain_aspect=True) # generate some scatter data # create a gaussian cloud of 500 points n_points = 500 mean = [0, 0] # mean of the Gaussian distribution covariance = [[1, 0], [0, 1]] # covariance matrix gaussian_cloud = np.random.multivariate_normal(mean, covariance, n_points) gaussian_cloud2 = np.random.multivariate_normal(mean, covariance, n_points) # add the scatter graphics to the figure figure["scatter"].add_scatter(data=gaussian_cloud, sizes=2, cmap="jet") figure["scatter"].add_scatter(data=gaussian_cloud2, colors="r", sizes=2) figure.show() # NOTE: `if __name__ == "__main__"` is NOT how to use fastplotlib interactively # please see our docs for using fastplotlib interactively in ipython and jupyter if __name__ == "__main__": print(__doc__) fpl.run() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 3.335 seconds) .. _sphx_glr_download__gallery_gridplot_multigraphic_gridplot.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: multigraphic_gridplot.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: multigraphic_gridplot.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: multigraphic_gridplot.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_