.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_gallery/line_collection/line_collection_cmap_values_qualitative.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr__gallery_line_collection_line_collection_cmap_values_qualitative.py: Line Collection Qualitative Colormap ==================================== Example showing a line collection with a qualitative cmap .. GENERATED FROM PYTHON SOURCE LINES 7-63 .. image-sg:: /_gallery/line_collection/images/sphx_glr_line_collection_cmap_values_qualitative_001.webp :alt: line collection cmap values qualitative :srcset: /_gallery/line_collection/images/sphx_glr_line_collection_cmap_values_qualitative_001.webp :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /home/runner/work/fastplotlib/fastplotlib/fastplotlib/graphics/_features/_base.py:18: UserWarning: casting float64 array to float32 warn(f"casting {array.dtype} array to float32") | .. code-block:: Python # test_example = true from itertools import product import numpy as np import fastplotlib as fpl def make_circle(center, radius: float, n_points: int = 75) -> np.ndarray: theta = np.linspace(0, 2 * np.pi, n_points) xs = radius * np.sin(theta) ys = radius * np.cos(theta) return np.column_stack([xs, ys]) + center spatial_dims = (50, 50) circles = list() for center in product(range(0, spatial_dims[0], 15), range(0, spatial_dims[1], 15)): circles.append(make_circle(center, 5, n_points=75)) pos_xy = np.vstack(circles) # this makes 16 circles, so we can create 16 cmap values, so it will use these values to set the # color of the line based by using the cmap as a LUT with the corresponding cmap_value # qualitative colormap used for mapping 16 cmap values for each line # for example, these could be cluster labels cmap_values = [ 0, 1, 1, 2, 0, 0, 1, 1, 2, 2, 3, 3, 1, 1, 1, 5 ] figure = fpl.Figure(size=(700, 560)) figure[0, 0].add_line_collection( circles, cmap="tab10", cmap_transform=cmap_values, thickness=10 ) # remove clutter figure[0, 0].axes.visible = False figure.show() # NOTE: `if __name__ == "__main__"` is NOT how to use fastplotlib interactively # please see our docs for using fastplotlib interactively in ipython and jupyter if __name__ == "__main__": print(__doc__) fpl.run() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.703 seconds) .. _sphx_glr_download__gallery_line_collection_line_collection_cmap_values_qualitative.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: line_collection_cmap_values_qualitative.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: line_collection_cmap_values_qualitative.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: line_collection_cmap_values_qualitative.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_