.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_gallery/mesh/surface_ellipsoid.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr__gallery_mesh_surface_ellipsoid.py: Ellipsoid surface ================= Simple example of a sphere surface mesh with a colormap indicating z values. .. GENERATED FROM PYTHON SOURCE LINES 8-55 .. image-sg:: /_gallery/mesh/images/sphx_glr_surface_ellipsoid_001.webp :alt: surface ellipsoid :srcset: /_gallery/mesh/images/sphx_glr_surface_ellipsoid_001.webp :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/pygfx/objects/_ruler.py:400: RuntimeWarning: divide by zero encountered in divide screen_full = (ndc_full[:, :2] / ndc_full[:, 3:4]) * half_canvas_size /opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/pygfx/objects/_ruler.py:400: RuntimeWarning: invalid value encountered in divide screen_full = (ndc_full[:, :2] / ndc_full[:, 3:4]) * half_canvas_size /opt/hostedtoolcache/Python/3.12.12/x64/lib/python3.12/site-packages/pygfx/objects/_ruler.py:412: RuntimeWarning: invalid value encountered in divide screen_sel = (ndc_sel[:, :2] / ndc_sel[:, 3:4]) * half_canvas_size | .. code-block:: Python # test_example = false import fastplotlib as fpl import numpy as np figure = fpl.Figure(size=(700, 560), cameras="3d", controller_types="orbit") # create an ellipsoid from spherical coordinates # see this for reference: https://mathworld.wolfram.com/SphericalCoordinates.html # phi and theta are swapped in this example w.r.t. the wolfram alpha description radius = 10 nx = 101 phi = np.linspace(0, np.pi * 2, num=nx, dtype=np.float32) ny = 51 theta = np.linspace(0, np.pi, num=ny, dtype=np.float32) phi_grid, theta_grid = np.meshgrid(phi, theta) # convert to cartesian coordinates theta_grid_sin = np.sin(theta_grid) x = radius * np.cos(phi_grid) * theta_grid_sin * -1 y = radius * np.cos(theta_grid) # elongate along z axis z = radius * 2 * np.sin(phi_grid) * theta_grid_sin sphere = figure[0, 0].add_surface( np.dstack([x, y, z]), mode="phong", cmap="bwr", # by default, providing a colormap name will map the colors to z values ) # display xz plane as a grid figure[0, 0].axes.grids.xy.visible = True figure.show() # view from top right angle figure[0, 0].camera.show_object(sphere.world_object, (1, 1, -1), up=(0, 0, 1)) # NOTE: fpl.loop.run() should not be used for interactive sessions # See the "JupyterLab and IPython" section in the user guide if __name__ == "__main__": print(__doc__) fpl.loop.run() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.675 seconds) .. _sphx_glr_download__gallery_mesh_surface_ellipsoid.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: surface_ellipsoid.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: surface_ellipsoid.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_