Source code for fastplotlib.graphics._features._positions_graphics

from typing import Any, List

import numpy as np
import pygfx

from ...utils import (
    parse_cmap_values,
)
from ._base import (
    GraphicFeature,
    BufferManager,
    FeatureEvent,
    to_gpu_supported_dtype,
)
from .utils import parse_colors


[docs] class VertexColors(BufferManager): """ **info dict** +------------+-----------------------------------------------------------+----------------------------------------------------------------------------------+ | dict key | value type | value description | +============+===========================================================+==================================================================================+ | key | int | slice | np.ndarray[int | bool] | tuple[slice, ...] | key at which colors were indexed/sliced | +------------+-----------------------------------------------------------+----------------------------------------------------------------------------------+ | value | np.ndarray | new color values for points that were changed, shape is [n_points_changed, RGBA] | +------------+-----------------------------------------------------------+----------------------------------------------------------------------------------+ | user_value | str | np.ndarray | tuple[float] | list[float] | list[str] | user input value that was parsed into the RGBA array | +------------+-----------------------------------------------------------+----------------------------------------------------------------------------------+ """ def __init__( self, colors: str | np.ndarray | tuple[float] | list[float] | list[str], n_colors: int, alpha: float = None, isolated_buffer: bool = True, ): """ Manages the vertex color buffer for :class:`LineGraphic` or :class:`ScatterGraphic` Parameters ---------- colors: str | np.ndarray | tuple[float, float, float, float] | list[str] | list[float] | int | float specify colors as a single human-readable string, RGBA array, or an iterable of strings or RGBA arrays n_colors: int number of colors, if passing in a single str or single RGBA array alpha: float, optional alpha value for the colors """ data = parse_colors(colors, n_colors, alpha) super().__init__(data=data, isolated_buffer=isolated_buffer) def __setitem__( self, key: int | slice | np.ndarray[int | bool] | tuple[slice, ...], user_value: str | np.ndarray | tuple[float] | list[float] | list[str], ): user_key = key if isinstance(key, tuple): # directly setting RGBA values for points, we do no parsing if not isinstance(user_value, (int, float, np.ndarray)): raise TypeError( "Can only set from int, float, or array to set colors directly by slicing the entire array" ) value = user_value elif isinstance(key, int): # set color of one point n_colors = 1 value = parse_colors(user_value, n_colors) elif isinstance(key, slice): # find n_colors by converting slice to range and then parse colors start, stop, step = key.indices(self.value.shape[0]) n_colors = len(range(start, stop, step)) value = parse_colors(user_value, n_colors) elif isinstance(key, (np.ndarray, list)): if isinstance(key, list): # convert to array key = np.array(key) # make sure it's 1D if not key.ndim == 1: raise TypeError( "If slicing colors with an array, it must be a 1D bool or int array" ) if key.dtype == bool: # make sure len is same if not key.size == self.buffer.data.shape[0]: raise IndexError( f"Length of array for fancy indexing must match number of datapoints.\n" f"There are {len(self.buffer.data.shape[0])} datapoints and you have passed {key.size} indices" ) n_colors = np.count_nonzero(key) elif np.issubdtype(key.dtype, np.integer): n_colors = key.size else: raise TypeError( "If slicing colors with an array, it must be a 1D bool or int array" ) value = parse_colors(user_value, n_colors) else: raise TypeError( f"invalid key for setting colors, you may set colors using integer indices, slices, or " f"fancy indexing using an array of integers or bool" ) self.buffer.data[key] = value self._update_range(key) if len(self._event_handlers) < 1: return event_info = { "key": user_key, "value": value, "user_value": user_value, } event = FeatureEvent("colors", info=event_info) self._call_event_handlers(event) def __len__(self): return len(self.buffer.data)
# Manages uniform color for line or scatter material
[docs] class UniformColor(GraphicFeature): def __init__( self, value: str | np.ndarray | tuple | list | pygfx.Color, alpha: float = 1.0 ): v = (*tuple(pygfx.Color(value))[:-1], alpha) # apply alpha self._value = pygfx.Color(v) super().__init__() @property def value(self) -> pygfx.Color: return self._value
[docs] def set_value(self, graphic, value: str | np.ndarray | tuple | list | pygfx.Color): value = pygfx.Color(value) graphic.world_object.material.color = value self._value = value event = FeatureEvent(type="colors", info={"value": value}) self._call_event_handlers(event)
# manages uniform size for scatter material
[docs] class UniformSize(GraphicFeature): def __init__(self, value: int | float): self._value = float(value) super().__init__() @property def value(self) -> float: return self._value
[docs] def set_value(self, graphic, value: float | int): graphic.world_object.material.size = float(value) self._value = value event = FeatureEvent(type="sizes", info={"value": value}) self._call_event_handlers(event)
# manages the coordinate space for scatter/line
[docs] class SizeSpace(GraphicFeature): def __init__(self, value: str): self._value = value super().__init__() @property def value(self) -> str: return self._value
[docs] def set_value(self, graphic, value: str): if "Line" in graphic.world_object.material.__class__.__name__: graphic.world_object.material.thickness_space = value else: graphic.world_object.material.size_space = value self._value = value event = FeatureEvent(type="size_space", info={"value": value}) self._call_event_handlers(event)
[docs] class VertexPositions(BufferManager): """ +----------+----------------------------------------------------------+------------------------------------------------------------------------------------------+ | dict key | value type | value description | +==========+==========================================================+==========================================================================================+ | key | int | slice | np.ndarray[int | bool] | tuple[slice, ...] | key at which vertex positions data were indexed/sliced | +----------+----------------------------------------------------------+------------------------------------------------------------------------------------------+ | value | np.ndarray | float | list[float] | new data values for points that were changed, shape depends on the indices that were set | +----------+----------------------------------------------------------+------------------------------------------------------------------------------------------+ """ def __init__(self, data: Any, isolated_buffer: bool = True): """ Manages the vertex positions buffer shown in the graphic. Supports fancy indexing if the data array also supports it. """ data = self._fix_data(data) super().__init__(data, isolated_buffer=isolated_buffer) def _fix_data(self, data): # data = to_gpu_supported_dtype(data) if data.ndim == 1: # if user provides a 1D array, assume these are y-values data = np.column_stack([np.arange(data.size, dtype=data.dtype), data]) if data.shape[1] != 3: if data.shape[1] != 2: raise ValueError(f"Must pass 1D, 2D or 3D data") # zeros for z zs = np.zeros(data.shape[0], dtype=data.dtype) # column stack [x, y, z] to make data of shape [n_points, 3] data = np.column_stack([data[:, 0], data[:, 1], zs]) return to_gpu_supported_dtype(data) def __setitem__( self, key: int | slice | np.ndarray[int | bool] | tuple[slice, ...], value: np.ndarray | float | list[float], ): # directly use the key to slice the buffer self.buffer.data[key] = value # _update_range handles parsing the key to # determine offset and size for GPU upload self._update_range(key) self._emit_event("data", key, value) def __len__(self): return len(self.buffer.data)
[docs] class PointsSizesFeature(BufferManager): """ +----------+-------------------------------------------------------------------+----------------------------------------------+ | dict key | value type | value description | +==========+===================================================================+==============================================+ | key | int | slice | np.ndarray[int | bool] | list[int | bool] | key at which point sizes indexed/sliced | +----------+-------------------------------------------------------------------+----------------------------------------------+ | value | int | float | np.ndarray | list[int | float] | tuple[int | float] | new size values for points that were changed | +----------+-------------------------------------------------------------------+----------------------------------------------+ """ def __init__( self, sizes: int | float | np.ndarray | list[int | float] | tuple[int | float], n_datapoints: int, isolated_buffer: bool = True, ): """ Manages sizes buffer of scatter points. """ sizes = self._fix_sizes(sizes, n_datapoints) super().__init__(data=sizes, isolated_buffer=isolated_buffer) def _fix_sizes( self, sizes: int | float | np.ndarray | list[int | float] | tuple[int | float], n_datapoints: int, ): if np.issubdtype(type(sizes), np.number): # single value given sizes = np.full( n_datapoints, sizes, dtype=np.float32 ) # force it into a float to avoid weird gpu errors elif isinstance( sizes, (np.ndarray, tuple, list) ): # if it's not a ndarray already, make it one sizes = np.asarray(sizes, dtype=np.float32) # read it in as a numpy.float32 if (sizes.ndim != 1) or (sizes.size != n_datapoints): raise ValueError( f"sequence of `sizes` must be 1 dimensional with " f"the same length as the number of datapoints" ) else: raise TypeError( "sizes must be a single <int>, <float>, or a sequence (array, list, tuple) of int" "or float with the length equal to the number of datapoints" ) if np.count_nonzero(sizes < 0) > 1: raise ValueError( "All sizes must be positive numbers greater than or equal to 0.0." ) return sizes def __setitem__( self, key: int | slice | np.ndarray[int | bool] | list[int | bool], value: int | float | np.ndarray | list[int | float] | tuple[int | float], ): # this is a very simple 1D buffer, no parsing required, directly set buffer self.buffer.data[key] = value self._update_range(key) self._emit_event("sizes", key, value) def __len__(self): return len(self.buffer.data)
[docs] class Thickness(GraphicFeature): """line thickness""" def __init__(self, value: float): self._value = value super().__init__() @property def value(self) -> float: return self._value
[docs] def set_value(self, graphic, value: float): graphic.world_object.material.thickness = value self._value = value event = FeatureEvent(type="thickness", info={"value": value}) self._call_event_handlers(event)
[docs] class VertexCmap(BufferManager): """ Sliceable colormap feature, manages a VertexColors instance and provides a way to set colormaps with arbitrary transforms """ def __init__( self, vertex_colors: VertexColors, cmap_name: str | None, transform: np.ndarray | None, alpha: float = 1.0, ): super().__init__(data=vertex_colors.buffer) self._vertex_colors = vertex_colors self._cmap_name = cmap_name self._transform = transform self._alpha = alpha if self._cmap_name is not None: if not isinstance(self._cmap_name, str): raise TypeError( f"cmap name must be of type <str>, you have passed: {self._cmap_name} of type: {type(self._cmap_name)}" ) if self._transform is not None: self._transform = np.asarray(self._transform) n_datapoints = vertex_colors.value.shape[0] colors = parse_cmap_values( n_colors=n_datapoints, cmap_name=self._cmap_name, transform=self._transform, ) colors[:, -1] = alpha # set vertex colors from cmap self._vertex_colors[:] = colors def __setitem__(self, key: slice, cmap_name): if not isinstance(key, slice): raise TypeError( "fancy indexing not supported for VertexCmap, only slices " "of a continuous are supported for apply a cmap" ) if key.step is not None: raise TypeError( "step sized indexing not currently supported for setting VertexCmap, " "slices must be a continuous region" ) # parse slice start, stop, step = key.indices(self.value.shape[0]) n_elements = len(range(start, stop, step)) colors = parse_cmap_values( n_colors=n_elements, cmap_name=cmap_name, transform=self._transform ) colors[:, -1] = self.alpha self._cmap_name = cmap_name self._vertex_colors[key] = colors # TODO: should we block vertex_colors from emitting an event? # Because currently this will result in 2 emitted events, one # for cmap and another from the colors self._emit_event("cmap", key, cmap_name) @property def name(self) -> str: return self._cmap_name @property def transform(self) -> np.ndarray | None: """Get or set the cmap transform. Maps values from the transform array to the cmap colors""" return self._transform @transform.setter def transform( self, values: np.ndarray | list[float | int], indices: slice | list | np.ndarray = None, ): if self._cmap_name is None: raise AttributeError( "cmap name is not set, set the cmap name before setting the transform" ) values = np.asarray(values) colors = parse_cmap_values( n_colors=self.value.shape[0], cmap_name=self._cmap_name, transform=values ) colors[:, -1] = self.alpha self._transform = values if indices is None: indices = slice(None) self._vertex_colors[indices] = colors self._emit_event("cmap.transform", indices, values) @property def alpha(self) -> float: """Get or set the alpha level""" return self._alpha @alpha.setter def alpha(self, value: float, indices: slice | list | np.ndarray = None): self._vertex_colors[indices, -1] = value self._alpha = value self._emit_event("cmap.alpha", indices, value) def __len__(self): raise NotImplementedError( "len not implemented for `cmap`, use len(colors) instead" ) def __repr__(self): return f"{self.__class__.__name__} | cmap: {self.name}\ntransform: {self.transform}"