Source code for fastplotlib.utils.functions

from collections import OrderedDict
from typing import *

import numpy as np
import cmap as cmap_lib

from pygfx import Texture, Color


cmap_catalog = cmap_lib.Catalog()

COLORMAPS = cmap_catalog.short_keys()

SEQUENTIAL_CMAPS = list()
QUALITATIVE_CMAPS = list()
CYCLIC_CMAPS = list()
DIVERGING_CMAPS = list()
MISC_CMAPS = list()


for name in COLORMAPS:
    _colormap = cmap_lib.Colormap(name)
    match _colormap.category:
        case "sequential":
            if _colormap.interpolation == "nearest":
                continue
            SEQUENTIAL_CMAPS.append(name)
        case "cyclic":
            if _colormap.interpolation == "nearest":
                continue
            CYCLIC_CMAPS.append(name)
        case "diverging":
            if _colormap.interpolation == "nearest":
                continue
            DIVERGING_CMAPS.append(name)
        case "qualitative":
            QUALITATIVE_CMAPS.append(name)
        case "miscellaneous":
            if _colormap.interpolation == "nearest":
                continue
            MISC_CMAPS.append(name)


COLORMAP_NAMES = {
    "sequential": sorted(SEQUENTIAL_CMAPS),
    "cyclic": sorted(CYCLIC_CMAPS),
    "diverging": sorted(DIVERGING_CMAPS),
    "qualitative": sorted(QUALITATIVE_CMAPS),
    "miscellaneous": sorted(MISC_CMAPS),
}


[docs] def get_cmap(name: str, alpha: float = 1.0, gamma: float = 1.0) -> np.ndarray: """ Get a colormap as numpy array Parameters ---------- name: str name of colormap alpha: float alpha, 0.0 - 1.0 gamma: float gamma, 0.0 - 1.0 Returns ------- np.ndarray [n_colors, 4], i.e. [n_colors, RGBA] """ cmap = cmap_lib.Colormap(name).lut(256, gamma=gamma) cmap[:, -1] = alpha return cmap.astype(np.float32)
[docs] def make_colors(n_colors: int, cmap: str, alpha: float = 1.0) -> np.ndarray: """ Get colors from a colormap. The returned colors are uniformly spaced, except for qualitative colormaps where they are returned subsequently. Parameters ---------- n_colors: int number of colors to get cmap: str name of colormap alpha: float, default 1.0 alpha value Returns ------- np.ndarray shape is [n_colors, 4], where the last dimension is RGBA """ cm = cmap_lib.Colormap(cmap) # can also use cm.category == "qualitative", but checking for non-interpolated # colormaps is a bit more general. (and not all "custom" colormaps will be # assigned a category) if cm.interpolation == "nearest": max_colors = len(cm.color_stops) if n_colors > max_colors: raise ValueError( f"You have requested <{n_colors}> colors but only <{max_colors}> exist for the " f"chosen cmap: <{cmap}>" ) return np.asarray(cm.color_stops, dtype=np.float32)[:n_colors, 1:] cm_ixs = np.linspace(0, 255, n_colors, dtype=int) return cm(cm_ixs).astype(np.float32)
def get_cmap_texture(name: str, alpha: float = 1.0) -> Texture: return cmap_lib.Colormap(name).to_pygfx()
[docs] def make_colors_dict(labels: Sequence, cmap: str, **kwargs) -> OrderedDict: """ Get a dict for mapping labels onto colors. Parameters ---------- labels: Sequence[Any] labels for creating a colormap. Order is maintained if it is a list of unique elements. cmap: str name of colormap **kwargs passed to make_colors() Returns ------- OrderedDict keys are labels, values are colors Examples -------- .. code-block:: python from fastplotlib.utils import get_colors_dict labels = ["l1", "l2", "l3"] labels_cmap = get_colors_dict(labels, cmap="tab10") # illustration of what the `labels_cmap` dict would look like: # keep in mind that the tab10 cmap was chosen here { "l1": <RGBA array for the blue 'tab10' color>, "l2": <RGBA array for the orange 'tab10' color>, "l3": <RGBA array for the green 'tab10' color>, } # another example with a non-qualitative cmap labels_cmap_seismic = get_colors_dict(labels, cmap="bwr") { "l1": <RGBA array for the blue 'bwr' color>, "l2": <RGBA array for the white 'bwr' color>, "l3": <RGBA array for the red 'bwr' color>, } """ if not len(set(labels)) == len(labels): labels = list(set(labels)) else: labels = list(labels) colors = make_colors(len(labels), cmap, **kwargs) return OrderedDict(zip(labels, colors))
[docs] def quick_min_max(data: np.ndarray) -> tuple[float, float]: """ Adapted from pyqtgraph.ImageView. Estimate the min/max values of *data* by subsampling. Parameters ---------- data: np.ndarray or array-like with `min` and `max` attributes Returns ------- (float, float) (min, max) """ if hasattr(data, "min") and hasattr(data, "max"): # if value is pre-computed if isinstance(data.min, (float, int, np.number)) and isinstance( data.max, (float, int, np.number) ): return data.min, data.max while data.size > 1e6: ax = np.argmax(data.shape) sl = [slice(None)] * data.ndim sl[ax] = slice(None, None, 2) data = data[tuple(sl)] return float(np.nanmin(data)), float(np.nanmax(data))
[docs] def make_pygfx_colors(colors, n_colors): """ Parse and make colors array using pyfx.Color Parameters ---------- colors: str, list, tuple, or np.ndarray pygfx parseable color n_colors: int number of repeats of the color Returns ------- np.ndarray shape is [n_colors, 4], i.e. [n_colors, RGBA] """ c = Color(colors) colors_array = np.repeat(np.array([c]), n_colors, axis=0) return colors_array
[docs] def calculate_figure_shape(n_subplots: int) -> tuple[int, int]: """ Returns ``(n_rows, n_cols)`` from given number of subplots ``n_subplots`` """ sr = np.sqrt(n_subplots) return (int(np.round(sr)), int(np.ceil(sr)))
[docs] def normalize_min_max(a): """normalize an array between 0 - 1""" if np.unique(a).size == 1: return np.zeros(a.size) return (a - np.min(a)) / (np.max(a - np.min(a)))
[docs] def parse_cmap_values( n_colors: int, cmap_name: str, transform: np.ndarray | list[int | float] = None, ) -> np.ndarray: """ Parameters ---------- n_colors: int number of graphics in collection cmap_name: str colormap name transform: np.ndarray | List[int | float], optional cmap transform Returns ------- """ if transform is None: colors = make_colors(n_colors, cmap_name) return colors else: if not isinstance(transform, np.ndarray): transform = np.array(transform) # use the of the cmap_transform to set the color of the corresponding data # each individual data[i] has its color based on the transform values if len(transform) != n_colors: raise ValueError( f"len(cmap_values) != len(data): {len(transform)} != {n_colors}" ) colormap = get_cmap(cmap_name) n_colors = colormap.shape[0] - 1 # can also use cm.category == "qualitative" if cmap_lib.Colormap(cmap_name).interpolation == "nearest": # check that cmap_values are <int> and within the number of colors `n_colors` # do not scale, use directly if not np.issubdtype(transform.dtype, np.integer): raise TypeError( f"<int> `cmap_transform` values should be used with qualitative colormaps, " f"the dtype you have passed is {transform.dtype}" ) if max(transform) > n_colors: raise IndexError( f"You have chosen the qualitative colormap <'{cmap_name}'> which only has " f"<{n_colors}> colors, which is lower than the max value of your `cmap_transform`." f"Choose a cmap with more colors, or a non-quantitative colormap." ) norm_cmap_values = transform else: # scale between 0 - n_colors so we can just index the colormap as a LUT norm_cmap_values = (normalize_min_max(transform) * n_colors).astype(int) # use colormap as LUT to map the cmap_values to the colormap index colors = np.vstack([colormap[val] for val in norm_cmap_values]) return colors