Note
Go to the end to download the full example code.
Iris Scatter Colormap#
Example showing cmap change for scatter plot.
/home/runner/work/fastplotlib/fastplotlib/fastplotlib/graphics/_features/_base.py:18: UserWarning: casting float64 array to float32
warn(f"casting {array.dtype} array to float32")
# test_example = true
import fastplotlib as fpl
from sklearn.cluster import AgglomerativeClustering
from sklearn import datasets
figure = fpl.Figure(size=(700, 560))
data = datasets.load_iris()["data"]
agg = AgglomerativeClustering(n_clusters=3)
agg.fit_predict(data)
scatter_graphic = figure[0, 0].add_scatter(
data=data[:, :-1], # use only xy data
sizes=15,
alpha=0.7,
cmap="Set1",
cmap_transform=agg.labels_ # use the labels as a transform to map colors from the colormap
)
figure.show()
scatter_graphic.cmap = "tab10"
if __name__ == "__main__":
print(__doc__)
fpl.loop.run()
Total running time of the script: (0 minutes 1.185 seconds)