Source code for fastplotlib.widgets.image_widget._widget
from copy import deepcopy
from typing import Callable
from warnings import warn
import numpy as np
from rendercanvas import BaseRenderCanvas
from ...layouts import ImguiFigure as Figure
from ...graphics import ImageGraphic
from ...utils import calculate_figure_shape, quick_min_max
from ...tools import HistogramLUTTool
from ._sliders import ImageWidgetSliders
# Number of dimensions that represent one image/one frame
# For grayscale shape will be [n_rows, n_cols], i.e. 2 dims
# For RGB(A) shape will be [n_rows, n_cols, c] where c is of size 3 (RGB) or 4 (RGBA)
IMAGE_DIM_COUNTS = {"gray": 2, "rgb": 3}
# Map boolean (indicating whether we use RGB or grayscale) to the string. Used to index RGB_DIM_MAP
RGB_BOOL_MAP = {False: "gray", True: "rgb"}
# Dimensions that can be scrolled from a given data array
SCROLLABLE_DIMS_ORDER = {
0: "",
1: "t",
2: "tz",
}
ALLOWED_SLIDER_DIMS = {0: "t", 1: "z"}
ALLOWED_WINDOW_DIMS = {"t", "z"}
def _is_arraylike(obj) -> bool:
"""
Checks if the object is array-like.
For now just checks if obj has `__getitem__()`
"""
for attr in ["__getitem__", "shape", "ndim"]:
if not hasattr(obj, attr):
return False
return True
class _WindowFunctions:
"""Stores window function and window size"""
def __init__(self, image_widget, func: callable, window_size: int):
self._image_widget = image_widget
self._func = None
self.func = func
self._window_size = 0
self.window_size = window_size
@property
def func(self) -> callable:
"""Get or set the function"""
return self._func
@func.setter
def func(self, func: callable):
self._func = func
# force update
self._image_widget.current_index = self._image_widget.current_index
@property
def window_size(self) -> int:
"""Get or set window size"""
return self._window_size
@window_size.setter
def window_size(self, ws: int):
if ws is None:
self._window_size = None
return
if not isinstance(ws, int):
raise TypeError("window size must be an int")
if ws < 3:
warn(
f"Invalid 'window size' value for function: {self.func}, "
f"setting 'window size' = None for this function. "
f"Valid values are integers >= 3."
)
self.window_size = None
return
if ws % 2 == 0:
ws += 1
self._window_size = ws
self._image_widget.current_index = self._image_widget.current_index
def __repr__(self):
return f"func: {self.func}, window_size: {self.window_size}"
[docs]
class ImageWidget:
@property
def figure(self) -> Figure:
"""
``Figure`` used by `ImageWidget`.
"""
return self._figure
@property
def managed_graphics(self) -> list[ImageGraphic]:
"""List of ``ImageWidget`` managed graphics."""
iw_managed = list()
for subplot in self.figure:
# empty subplots will not have any image widget data
if len(subplot.graphics) > 0:
iw_managed.append(subplot["image_widget_managed"])
return iw_managed
@property
def cmap(self) -> list[str]:
cmaps = list()
for g in self.managed_graphics:
cmaps.append(g.cmap)
return cmaps
@cmap.setter
def cmap(self, names: str | list[str]):
if isinstance(names, list):
if not all([isinstance(n, str) for n in names]):
raise TypeError(
f"Must pass cmap name as a `str` of list of `str`, you have passed:\n{names}"
)
if not len(names) == len(self.managed_graphics):
raise IndexError(
f"If passing a list of cmap names, the length of the list must be the same as the number of "
f"image widget subplots. You have passed: {len(names)} cmap names and have "
f"{len(self.managed_graphics)} image widget subplots"
)
for name, g in zip(names, self.managed_graphics):
g.cmap = name
elif isinstance(names, str):
for g in self.managed_graphics:
g.cmap = names
@property
def data(self) -> list[np.ndarray]:
"""data currently displayed in the widget"""
return self._data
@property
def ndim(self) -> int:
"""Number of dimensions of grayscale data displayed in the widget (it will be 1 more for RGB(A) data)"""
return self._ndim
@property
def n_scrollable_dims(self) -> list[int]:
"""
list indicating the number of dimenensions that are scrollable for each data array
All other dimensions are frame/image data, i.e. [rows, cols] or [rows, cols, rgb(a)]
"""
return self._n_scrollable_dims
@property
def slider_dims(self) -> list[str]:
"""the dimensions that the sliders index"""
return self._slider_dims
@property
def current_index(self) -> dict[str, int]:
"""
Get or set the current index
Returns
-------
index: Dict[str, int]
| ``dict`` for indexing each dimension, provide a ``dict`` with indices for all dimensions used by sliders
or only a subset of dimensions used by the sliders.
| example: if you have sliders for dims "t" and "z", you can pass either ``{"t": 10}`` to index to position
10 on dimension "t" or ``{"t": 5, "z": 20}`` to index to position 5 on dimension "t" and position 20 on
dimension "z" simultaneously.
"""
return self._current_index
@current_index.setter
def current_index(self, index: dict[str, int]):
if not self._initialized:
return
if not set(index.keys()).issubset(set(self._current_index.keys())):
raise KeyError(
f"All dimension keys for setting `current_index` must be present in the widget sliders. "
f"The dimensions currently used for sliders are: {list(self.current_index.keys())}"
)
for k, val in index.items():
if not isinstance(val, int):
raise TypeError("Indices for all dimensions must be int")
if val < 0:
raise IndexError("negative indexing is not supported for ImageWidget")
if val > self._dims_max_bounds[k]:
raise IndexError(
f"index {val} is out of bounds for dimension '{k}' "
f"which has a max bound of: {self._dims_max_bounds[k]}"
)
self._current_index.update(index)
for i, (ig, data) in enumerate(zip(self.managed_graphics, self.data)):
frame = self._process_indices(data, self._current_index)
frame = self._process_frame_apply(frame, i)
ig.data = frame
# call any event handlers
for handler in self._current_index_changed_handlers:
handler(self.current_index)
@property
def n_img_dims(self) -> list[int]:
"""
list indicating the number of dimensions that contain image/single frame data for each data array.
if 2: data are grayscale, i.e. [x, y] dims, if 3: data are [x, y, c] where c is RGB or RGBA,
this is the complement of `n_scrollable_dims`
"""
return self._n_img_dims
def _get_n_scrollable_dims(self, curr_arr: np.ndarray, rgb: bool) -> list[int]:
"""
For a given ``array`` displayed in the ImageWidget, this function infers how many of the dimensions are
supported by sliders (aka scrollable). Ex: "xy" data has 0 scrollable dims, "txy" has 1, "tzxy" has 2.
Parameters
----------
curr_arr: np.ndarray
np.ndarray or a list of array-like
rgb: bool
True if we view this as RGB(A) and False if grayscale
Returns
-------
int
Number of scrollable dimensions for each ``array`` in the dataset.
"""
n_img_dims = IMAGE_DIM_COUNTS[RGB_BOOL_MAP[rgb]]
# Make sure each image stack at least ``n_img_dims`` dimensions
if len(curr_arr.shape) < n_img_dims:
raise ValueError(
f"Your array has shape {curr_arr.shape} "
f"but you specified that each image in your array is {n_img_dims}D "
)
# If RGB(A), last dim must be 3 or 4
if n_img_dims == 3:
if not (curr_arr.shape[-1] == 3 or curr_arr.shape[-1] == 4):
raise ValueError(
f"Expected size 3 or 4 for last dimension of RGB(A) array, got: {curr_arr.shape[-1]}."
)
n_scrollable_dims = len(curr_arr.shape) - n_img_dims
if n_scrollable_dims not in SCROLLABLE_DIMS_ORDER.keys():
raise ValueError(f"Array had shape {curr_arr.shape} which is not supported")
return n_scrollable_dims
def __init__(
self,
data: np.ndarray | list[np.ndarray],
window_funcs: dict[str, tuple[Callable, int]] = None,
frame_apply: Callable | dict[int, Callable] = None,
figure_shape: tuple[int, int] = None,
names: list[str] = None,
figure_kwargs: dict = None,
histogram_widget: bool = True,
rgb: bool | list[bool] = None,
cmap: str = "plasma",
graphic_kwargs: dict = None,
):
"""
This widget facilitates high-level navigation through image stacks, which are arrays containing one or more
images. It includes sliders for key dimensions such as "t" (time) and "z", enabling users to smoothly navigate
through one or multiple image stacks simultaneously.
Allowed dimensions orders for each image stack: Note that each has a an optional (c) channel which refers to
RGB(A) a channel. So this channel should be either 3 or 4.
======= ==========
n_dims dims order
======= ==========
2 "xy(c)"
3 "txy(c)"
4 "tzxy(c)"
======= ==========
Parameters
----------
data: Union[np.ndarray, List[np.ndarray]
array-like or a list of array-like
window_funcs: dict[str, tuple[Callable, int]], i.e. {"t" or "z": (callable, int)}
| Apply function(s) with rolling windows along "t" and/or "z" dimensions of the `data` arrays.
| Pass a dict in the form: {dimension: (func, window_size)}, `func` must take a slice of the data array as
| the first argument and must take `axis` as a kwarg.
| Ex: mean along "t" dimension: {"t": (np.mean, 11)}, if `current_index` of "t" is 50, it will pass frames
| 45 to 55 to `np.mean` with `axis=0`.
| Ex: max along z dim: {"z": (np.max, 3)}, passes current, previous & next frame to `np.max` with `axis=1`
frame_apply: Union[callable, Dict[int, callable]]
| Apply function(s) to `data` arrays before to generate final 2D image that is displayed.
| Ex: apply a spatial gaussian filter
| Pass a single function or a dict of functions to apply to each array individually
| examples: ``{array_index: to_grayscale}``, ``{0: to_grayscale, 2: threshold_img}``
| "array_index" is the position of the corresponding array in the data list.
| if `window_funcs` is used, then this function is applied after `window_funcs`
| this function must be a callable that returns a 2D array
| example use case: converting an RGB frame from video to a 2D grayscale frame
figure_shape: Optional[Tuple[int, int]]
manually provide the shape for the Figure, otherwise the number of rows and columns is estimated
figure_kwargs: dict, optional
passed to `GridPlot`
names: Optional[str]
gives names to the subplots
histogram_widget: bool, default False
make histogram LUT widget for each subplot
rgb: bool | list[bool], default None
bool or list of bool for each input data array in the ImageWidget, indicating whether the corresponding
data arrays are grayscale or RGB(A).
graphic_kwargs: Any
passed to each ImageGraphic in the ImageWidget figure subplots
"""
self._initialized = False
self._names = None
if figure_kwargs is None:
figure_kwargs = dict()
if _is_arraylike(data):
data = [data]
if isinstance(data, list):
# verify that it's a list of np.ndarray
if all([_is_arraylike(d) for d in data]):
# Grid computations
if figure_shape is None:
if "shape" in figure_kwargs:
figure_shape = figure_kwargs["shape"]
else:
figure_shape = calculate_figure_shape(len(data))
# Regardless of how figure_shape is computed, below code
# verifies that figure shape is large enough for the number of image arrays passed
if figure_shape[0] * figure_shape[1] < len(data):
original_shape = (figure_shape[0], figure_shape[1])
figure_shape = calculate_figure_shape(len(data))
warn(
f"Original `figure_shape` was: {original_shape} "
f" but data length is {len(data)}"
f" Resetting figure shape to: {figure_shape}"
)
self._data: list[np.ndarray] = data
# Establish number of image dimensions and number of scrollable dimensions for each array
if rgb is None:
rgb = [False] * len(self.data)
if isinstance(rgb, bool):
rgb = [rgb] * len(self.data)
if not isinstance(rgb, list):
raise TypeError(
f"`rgb` parameter must be a bool or list of bool, a <{type(rgb)}> was provided"
)
if not len(rgb) == len(self.data):
raise ValueError(
f"len(rgb) != len(data), {len(rgb)} != {len(self.data)}. These must be equal"
)
self._rgb = rgb
self._n_img_dims = [
IMAGE_DIM_COUNTS[RGB_BOOL_MAP[self._rgb[i]]]
for i in range(len(self.data))
]
self._n_scrollable_dims = [
self._get_n_scrollable_dims(self.data[i], self._rgb[i])
for i in range(len(self.data))
]
# Define ndim of ImageWidget instance as largest number of scrollable dims + 2 (grayscale dimensions)
self._ndim = (
max(
[
self.n_scrollable_dims[i]
for i in range(len(self.n_scrollable_dims))
]
)
+ IMAGE_DIM_COUNTS[RGB_BOOL_MAP[False]]
)
if names is not None:
if not all([isinstance(n, str) for n in names]):
raise TypeError(
"optional argument `names` must be a list of str"
)
if len(names) != len(self.data):
raise ValueError(
"number of `names` for subplots must be same as the number of data arrays"
)
self._names = names
else:
raise TypeError(
f"If passing a list to `data` all elements must be an "
f"array-like type representing an n-dimensional image. "
f"You have passed the following types:\n"
f"{[type(a) for a in data]}"
)
else:
raise TypeError(
f"`data` must be an array-like type or a list of array-like."
f"You have passed the following type {type(data)}"
)
# Sliders are made for all dimensions except the image dimensions
self._slider_dims = list()
max_scrollable = max(
[self.n_scrollable_dims[i] for i in range(len(self.n_scrollable_dims))]
)
for dim in range(max_scrollable):
if dim in ALLOWED_SLIDER_DIMS.keys():
self.slider_dims.append(ALLOWED_SLIDER_DIMS[dim])
self._frame_apply: dict[int, callable] = dict()
if frame_apply is not None:
if callable(frame_apply):
self._frame_apply = frame_apply
elif isinstance(frame_apply, dict):
self._frame_apply: dict[int, callable] = dict.fromkeys(
list(range(len(self.data)))
)
# dict of {array: dims_order_str}
for data_ix in list(frame_apply.keys()):
if not isinstance(data_ix, int):
raise TypeError("`frame_apply` dict keys must be <int>")
try:
self._frame_apply[data_ix] = frame_apply[data_ix]
except Exception:
raise IndexError(
f"key index {data_ix} out of bounds for `frame_apply`, the bounds are 0 - {len(self.data)}"
)
else:
raise TypeError(
f"`frame_apply` must be a callable or <Dict[int: callable]>, "
f"you have passed a: <{type(frame_apply)}>"
)
# current_index stores {dimension_index: slice_index} for every dimension
self._current_index: dict[str, int] = {sax: 0 for sax in self.slider_dims}
self._window_funcs = None
self.window_funcs = window_funcs
# get max bound for all data arrays for all slider dimensions and ensure compatibility across slider dims
self._dims_max_bounds: dict[str, int] = {k: 0 for k in self.slider_dims}
for i, _dim in enumerate(list(self._dims_max_bounds.keys())):
for array, partition in zip(self.data, self.n_scrollable_dims):
if partition <= i:
continue
else:
if 0 < self._dims_max_bounds[_dim] != array.shape[i]:
raise ValueError(f"Two arrays differ along dimension {_dim}")
else:
self._dims_max_bounds[_dim] = max(
self._dims_max_bounds[_dim], array.shape[i]
)
figure_kwargs_default = {"controller_ids": "sync"}
# update the default kwargs with any user-specified kwargs
# user specified kwargs will overwrite the defaults
figure_kwargs_default.update(figure_kwargs)
figure_kwargs_default["shape"] = figure_shape
if graphic_kwargs is None:
graphic_kwargs = dict()
graphic_kwargs.update({"cmap": cmap})
vmin_specified, vmax_specified = None, None
if "vmin" in graphic_kwargs.keys():
vmin_specified = graphic_kwargs.pop("vmin")
if "vmax" in graphic_kwargs.keys():
vmax_specified = graphic_kwargs.pop("vmax")
self._figure: Figure = Figure(**figure_kwargs_default)
self._histogram_widget = histogram_widget
for data_ix, (d, subplot) in enumerate(zip(self.data, self.figure)):
if self._names is not None:
name = self._names[data_ix]
else:
name = None
frame = self._process_indices(d, slice_indices=self._current_index)
frame = self._process_frame_apply(frame, data_ix)
if (vmin_specified is None) or (vmax_specified is None):
# if either vmin or vmax are not specified, calculate an estimate by subsampling
vmin_estimate, vmax_estimate = quick_min_max(d)
# decide vmin, vmax passed to ImageGraphic constructor based on whether it's user specified or now
if vmin_specified is None:
# user hasn't specified vmin, use estimated value
vmin = vmin_estimate
else:
# user has provided a specific value, use that
vmin = vmin_specified
if vmax_specified is None:
vmax = vmax_estimate
else:
vmax = vmax_specified
else:
# both vmin and vmax are specified
vmin, vmax = vmin_specified, vmax_specified
ig = ImageGraphic(
frame,
name="image_widget_managed",
vmin=vmin,
vmax=vmax,
**graphic_kwargs,
)
subplot.add_graphic(ig)
subplot.name = name
subplot.set_title(name)
if self._histogram_widget:
hlut = HistogramLUTTool(data=d, image_graphic=ig, name="histogram_lut")
subplot.docks["right"].add_graphic(hlut)
subplot.docks["right"].size = 80
subplot.docks["right"].auto_scale(maintain_aspect=False)
subplot.docks["right"].controller.enabled = False
# hard code the expected height so that the first render looks right in tests, docs etc.
if len(self.slider_dims) == 0:
ui_size = 57
if len(self.slider_dims) == 1:
ui_size = 106
elif len(self.slider_dims) == 2:
ui_size = 155
self._image_widget_sliders = ImageWidgetSliders(
figure=self.figure,
size=ui_size,
location="bottom",
title="ImageWidget Controls",
image_widget=self,
)
self.figure.add_gui(self._image_widget_sliders)
self._initialized = True
self._current_index_changed_handlers = set()
@property
def frame_apply(self) -> dict | None:
return self._frame_apply
@frame_apply.setter
def frame_apply(self, frame_apply: dict[int, callable]):
if frame_apply is None:
frame_apply = dict()
self._frame_apply = frame_apply
# force update image graphic
self.current_index = self.current_index
@property
def window_funcs(self) -> dict[str, _WindowFunctions]:
"""
Get or set the window functions
Returns
-------
Dict[str, _WindowFunctions]
"""
return self._window_funcs
@window_funcs.setter
def window_funcs(self, callable_dict: dict[str, int]):
if callable_dict is None:
self._window_funcs = None
# force frame to update
self.current_index = self.current_index
return
elif isinstance(callable_dict, dict):
if not set(callable_dict.keys()).issubset(ALLOWED_WINDOW_DIMS):
raise ValueError(
f"The only allowed keys to window funcs are {list(ALLOWED_WINDOW_DIMS)} "
f"Your window func passed in these keys: {list(callable_dict.keys())}"
)
if not all(
[
isinstance(_callable_dict, tuple)
for _callable_dict in callable_dict.values()
]
):
raise TypeError(
"dict argument to `window_funcs` must be in the form of: "
"`{dimension: (func, window_size)}`. "
"See the docstring."
)
for v in callable_dict.values():
if not callable(v[0]):
raise TypeError(
"dict argument to `window_funcs` must be in the form of: "
"`{dimension: (func, window_size)}`. "
"See the docstring."
)
if not isinstance(v[1], int):
raise TypeError(
f"dict argument to `window_funcs` must be in the form of: "
"`{dimension: (func, window_size)}`. "
f"where window_size is integer. you passed in {v[1]} for window_size"
)
if not isinstance(self._window_funcs, dict):
self._window_funcs = dict()
for k in list(callable_dict.keys()):
self._window_funcs[k] = _WindowFunctions(self, *callable_dict[k])
else:
raise TypeError(
f"`window_funcs` must be either Nonetype or dict."
f"You have passed a {type(callable_dict)}. See the docstring."
)
# force frame to update
self.current_index = self.current_index
def _process_indices(
self, array: np.ndarray, slice_indices: dict[str, int]
) -> np.ndarray:
"""
Get the 2D array from the given slice indices. If not returning a 2D slice (such as due to window_funcs)
then `frame_apply` must take this output and return a 2D array
Parameters
----------
array: np.ndarray
array-like to get a 2D slice from
slice_indices: Dict[str, int]
dict in form of {dimension_index: current_index}
For example if an array has shape [1000, 30, 512, 512] corresponding to [t, z, x, y]:
To get the 100th timepoint and 3rd z-plane pass:
{"t": 100, "z": 3}
Returns
-------
np.ndarray
array-like, 2D slice
"""
data_ix = None
for i in range(len(self.data)):
if self.data[i] is array:
data_ix = i
break
numerical_dims = list()
# Totally number of dimensions for this specific array
curr_ndim = self.data[data_ix].ndim
# Initialize slices for each dimension of array
indexer = [slice(None)] * curr_ndim
# Maps from n_scrollable_dims to one of "", "t", "tz", etc.
curr_scrollable_format = SCROLLABLE_DIMS_ORDER[self.n_scrollable_dims[data_ix]]
for dim in list(slice_indices.keys()):
if dim not in curr_scrollable_format:
continue
# get axes order for that specific array
numerical_dim = curr_scrollable_format.index(dim)
indices_dim = slice_indices[dim]
# takes care of index selection (window slicing) for this specific axis
indices_dim = self._get_window_indices(data_ix, numerical_dim, indices_dim)
# set the indices for this dimension
indexer[numerical_dim] = indices_dim
numerical_dims.append(numerical_dim)
# apply indexing to the array
# use window function is given for this dimension
if self.window_funcs is not None:
a = array
for i, dim in enumerate(sorted(numerical_dims)):
dim_str = curr_scrollable_format[dim]
dim = dim - i # since we loose a dimension every iteration
_indexer = [slice(None)] * (curr_ndim - i)
_indexer[dim] = indexer[dim + i]
# if the indexer is an int, this dim has no window func
if isinstance(_indexer[dim], int):
a = a[tuple(_indexer)]
else:
# if the indices are from `self._get_window_indices`
func = self.window_funcs[dim_str].func
window = a[tuple(_indexer)]
a = func(window, axis=dim)
return a
else:
return array[tuple(indexer)]
def _get_window_indices(self, data_ix, dim, indices_dim):
if self.window_funcs is None:
return indices_dim
else:
ix = indices_dim
dim_str = SCROLLABLE_DIMS_ORDER[self.n_scrollable_dims[data_ix]][dim]
# if no window stuff specified for this dim
if dim_str not in self.window_funcs.keys():
return indices_dim
# if window stuff is set to None for this dim
# example: {"t": None}
if self.window_funcs[dim_str] is None:
return indices_dim
window_size = self.window_funcs[dim_str].window_size
if (window_size == 0) or (window_size is None):
return indices_dim
half_window = int((window_size - 1) / 2) # half-window size
# get the max bound for that dimension
max_bound = self._dims_max_bounds[dim_str]
indices_dim = range(
max(0, ix - half_window), min(max_bound, ix + half_window)
)
return indices_dim
def _process_frame_apply(self, array, data_ix) -> np.ndarray:
if callable(self._frame_apply):
return self._frame_apply(array)
if data_ix not in self._frame_apply.keys():
return array
elif self._frame_apply[data_ix] is not None:
return self._frame_apply[data_ix](array)
return array
[docs]
def add_event_handler(self, handler: callable, event: str = "current_index"):
"""
Register an event handler.
Currently the only event that ImageWidget supports is "current_index". This event is
emitted whenever the index of the ImageWidget changes.
Parameters
----------
handler: callable
callback function, must take a dict as the only argument. This dict will be the `current_index`
event: str, "current_index"
the only supported event is "current_index"
Example
-------
.. code-block:: py
def my_handler(index):
print(index)
# example prints: {"t": 100} if data has only time dimension
# "z" index will be another key if present in the data, ex: {"t": 100, "z": 5}
# create an image widget
iw = ImageWidget(...)
# add event handler
iw.add_event_handler(my_handler)
"""
if event != "current_index":
raise ValueError(
"`current_index` is the only event supported by `ImageWidget`"
)
self._current_index_changed_handlers.add(handler)
[docs]
def remove_event_handler(self, handler: callable):
"""Remove a registered event handler"""
self._current_index_changed_handlers.remove(handler)
[docs]
def clear_event_handlers(self):
"""Clear all registered event handlers"""
self._current_index_changed_handlers.clear()
[docs]
def reset_vmin_vmax(self):
"""
Reset the vmin and vmax w.r.t. the full data
"""
for data, subplot in zip(self.data, self.figure):
if "histogram_lut" not in subplot.docks["right"]:
continue
hlut = subplot.docks["right"]["histogram_lut"]
hlut.set_data(data, reset_vmin_vmax=True)
[docs]
def reset_vmin_vmax_frame(self):
"""
Resets the vmin vmax and HistogramLUT widgets w.r.t. the current data shown in the
ImageGraphic instead of the data in the full data array. For example, if a post-processing
function is used, the range of values in the ImageGraphic can be very different from the
range of values in the full data array.
TODO: We could think of applying the frame_apply funcs to a subsample of the entire array to get a better estimate of vmin vmax?
"""
for subplot in self.figure:
if "histogram_lut" not in subplot.docks["right"]:
continue
hlut = subplot.docks["right"]["histogram_lut"]
# set the data using the current image graphic data
hlut.set_data(subplot["image_widget_managed"].data.value)
[docs]
def set_data(
self,
new_data: np.ndarray | list[np.ndarray],
reset_vmin_vmax: bool = True,
reset_indices: bool = True,
):
"""
Change data of widget. Note: sliders max currently update only for ``txy`` and ``tzxy`` data.
Parameters
----------
new_data: array-like or list of array-like
The new data to display in the widget
reset_vmin_vmax: bool, default ``True``
reset the vmin vmax levels based on the new data
reset_indices: bool, default ``True``
reset the current index for all dimensions to 0
"""
if reset_indices:
for key in self.current_index:
self.current_index[key] = 0
# set slider max according to new data
max_lengths = dict()
for scroll_dim in self.slider_dims:
max_lengths[scroll_dim] = np.inf
if _is_arraylike(new_data):
new_data = [new_data]
if len(self._data) != len(new_data):
raise ValueError(
f"number of new data arrays {len(new_data)} must match"
f" current number of data arrays {len(self._data)}"
)
# check all arrays
for i, (new_array, current_array) in enumerate(zip(new_data, self._data)):
if new_array.ndim != current_array.ndim:
raise ValueError(
f"new data ndim {new_array.ndim} at index {i} "
f"does not equal current data ndim {current_array.ndim}"
)
# Computes the number of scrollable dims and also validates new_array
new_scrollable_dims = self._get_n_scrollable_dims(new_array, self._rgb[i])
if self.n_scrollable_dims[i] != new_scrollable_dims:
raise ValueError(
f"number of dimensions of data arrays must match number of dimensions of "
f"existing data arrays"
)
# if checks pass, update with new data
for i, (new_array, current_array, subplot) in enumerate(
zip(new_data, self._data, self.figure)
):
# check last two dims (x and y) to see if data shape is changing
old_data_shape = self._data[i].shape[-self.n_img_dims[i] :]
self._data[i] = new_array
if old_data_shape != new_array.shape[-self.n_img_dims[i] :]:
frame = self._process_indices(
new_array, slice_indices=self._current_index
)
frame = self._process_frame_apply(frame, i)
# make new graphic first
new_graphic = ImageGraphic(data=frame, name="image_widget_managed")
# set hlut tool to use new graphic
subplot.docks["right"]["histogram_lut"].image_graphic = new_graphic
# delete old graphic after setting hlut tool to new graphic
# this ensures gc
subplot.delete_graphic(graphic=subplot["image_widget_managed"])
subplot.insert_graphic(graphic=new_graphic)
# Returns "", "t", or "tz"
curr_scrollable_format = SCROLLABLE_DIMS_ORDER[self.n_scrollable_dims[i]]
for scroll_dim in self.slider_dims:
if scroll_dim in curr_scrollable_format:
new_length = new_array.shape[
curr_scrollable_format.index(scroll_dim)
]
if max_lengths[scroll_dim] == np.inf:
max_lengths[scroll_dim] = new_length
elif max_lengths[scroll_dim] != new_length:
raise ValueError(
f"New arrays have differing values along dim {scroll_dim}"
)
self._dims_max_bounds[scroll_dim] = max_lengths[scroll_dim]
# set histogram widget
if self._histogram_widget:
subplot.docks["right"]["histogram_lut"].set_data(
new_array, reset_vmin_vmax=reset_vmin_vmax
)
# force graphics to update
self.current_index = self.current_index
[docs]
def show(self, **kwargs):
"""
Show the widget.
Parameters
----------
kwargs: Any
passed to `Figure.show()`
Returns
-------
BaseRenderCanvas
In Qt or GLFW, the canvas window containing the Figure will be shown.
In jupyter, it will display the plot in the output cell or sidecar.
"""
return self.figure.show(**kwargs)