Note
Go to the end to download the full example code.
Iris Scatter Plot#
Example showing scatter plot using sklearn iris dataset.

/home/runner/work/fastplotlib/fastplotlib/fastplotlib/graphics/features/_base.py:18: UserWarning: casting float64 array to float32
warn(f"casting {array.dtype} array to float32")
# test_example = true
import fastplotlib as fpl
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from sklearn import datasets
figure = fpl.Figure(size=(700, 560))
data, target = datasets.load_iris(return_X_y=True)
data = data[:, :2] # use only first 2 features
# map target class to scatter point marker
markers_map = {0: "o", 1: "s", 2: "+"}
markers = list(map(markers_map.get, target))
agg = AgglomerativeClustering(n_clusters=3)
agg.fit_predict(data)
clusters_labels = agg.labels_
scatter = figure[0, 0].add_scatter(
data=data,
sizes=10,
alpha=0.7,
cmap="tab10",
cmap_transform=clusters_labels,
markers=markers,
)
figure.show()
# NOTE: fpl.loop.run() should not be used for interactive sessions
# See the "JupyterLab and IPython" section in the user guide
if __name__ == "__main__":
print(__doc__)
fpl.loop.run()
Total running time of the script: (0 minutes 0.400 seconds)