Note
Go to the end to download the full example code.
Linear Selectors Image#
Example showing how to use a LinearSelector to selector rows or columns of an image. The subplot on the right displays the data for the selector row and column.
# test_example = false
import fastplotlib as fpl
from imageio import v3 as iio
image_data = iio.imread("imageio:coins.png")
figure = fpl.Figure(
(1, 3),
size=(700, 300),
names=[["image", "selected row data", "selected column data"]]
)
# create an image
image = figure[0, 0].add_image(image_data)
# add a row selector
image_row_selector = image.add_linear_selector(axis="y")
# add column selector
image_col_selector = image.add_linear_selector()
# make a line to indicate row data
line_image_row = figure[0, 1].add_line(image.data[0])
# make a line to indicate column data
line_image_col = figure[0, 2].add_line(image.data[:, 0])
# callbacks to change the line data in subplot [0, 1]
# to display selected row and selected column data
def image_row_selector_changed(ev):
ix = ev.get_selected_index()
new_data = image.data[ix]
# set y values of line with the row data
line_image_row.data[:, 1] = new_data
def image_col_selector_changed(ev):
ix = ev.get_selected_index()
new_data = image.data[:, ix]
# set y values of line with the column data
line_image_col.data[:, 1] = new_data
# add event handlers, you can also use a decorator
image_row_selector.add_event_handler(image_row_selector_changed, "selection")
image_col_selector.add_event_handler(image_col_selector_changed, "selection")
# programmatically set the selection or drag it with your mouse pointer
image_row_selector.selection = 200
image_col_selector.selection = 180
figure.show()
for subplot in figure:
subplot.camera.zoom = 0.5
# NOTE: `if __name__ == "__main__"` is NOT how to use fastplotlib interactively
# please see our docs for using fastplotlib interactively in ipython and jupyter
if __name__ == "__main__":
print(__doc__)
fpl.loop.run()
Total running time of the script: (0 minutes 0.940 seconds)